
Brandon Cook!
Brian Friesen

Introduction to
Intel Xeon Phi
(“Knights
Landing”) on Cori

-	1	-	

2017	June	9	

Knights Landing is here!

•  KNL	nodes	installed	in	Cori	in	2016	
•  “Pre-produc=on”	for	~	1	year	
–  No	charge	for	using	KNL	nodes	
–  Limited	access	(un7l	now!)	
–  Intermi=ent	down7me	
–  Frequent	so@ware	changes	

•  KNL	nodes	on	Cori	will	soon	enter	produc=on	
–  Charging	begins	2017	July	1	

-	2	-	

Knights Landing overview

Knights Landing: Next Intel® Xeon Phi™ Processor

First self-boot Intel® Xeon Phi™ processor that is binary
compatible with main line IA. Boots standard OS.

Significant improvement in scalar and vector performance

Integration of Memory on package: innovative memory
architecture for high bandwidth and high capacity

Integration of Fabric on package

Potential future options subject to change without notice.
All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.

Three products

KNL Self-Boot KNL Self-Boot w/ Fabric KNL Card

(Baseline) (Fabric Integrated) (PCIe-Card)

Intel® Many-Core Processor targeted for HPC and Supercomputing

-	3	-	

Knights Landing overview

-	4	-	

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
 DDR4: 6 channels @ 2400 up to 384GB
IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

TILE

4

2 VPU

Core

2 VPU

Core

1MB
L2

CHA

Package

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and
are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change
without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth
numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been
estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system
hardware or software design or configuration may affect actual performance. Omni-path not shown

EDC EDC PCIe
Gen 3

EDC EDC

Tile

DDR MC DDR MC

EDC EDC misc EDC EDC

36 Tiles
connected by

2D Mesh
Interconnect

MCDRAM MCDRAM MCDRAM MCDRAM

3

D
D
R
4

C
H
A
N
N
E
L
S

3

D
D
R
4

C
H
A
N
N
E
L
S

MCDRAM MCDRAM MCDRAM MCDRAM

D
M
I

2 x16
1 x4

X4
DMI

Knights Landing overview

-	5	-	

KNL Tile: 2 Cores, each with 2 VPU
1M L2 shared between two Cores

2 VPU: 2x AVX512 units. 32SP/16DP per unit. X87, SSE, AVX1, AVX2 and EMU

Core: Changed from Knights Corner (KNC) to KNL. Based on 2-wide OoO
Silvermont™ Microarchitecture, but with many changes for HPC.
4 thread/core. Deeper OoO. Better RAS. Higher bandwidth. Larger TLBs.

L2: 1MB 16-way. 1 Line Read and ½ Line Write per cycle. Coherent across all Tiles

CHA: Caching/Home Agent. Distributed Tag Directory to keep L2s coherent. MESIF
protocol. 2D-Mesh connections for Tile

Knights Landing overview

-	6	-	

6

Many Trailblazing Improvements in KNL
Improvements What/Why

Self Boot Processor No PCIe bottleneck

Binary Compatibility with Xeon Runs all legacy software. No recompilation.

New Core: Atom™ based ~3x higher ST performance over KNC

Improved Vector density 3+ TFLOPS (DP) peak per chip

New AVX 512 ISA New 512-bit Vector ISA with Masks

Scatter/Gather Engine Hardware support for gather and scatter

New memory technology:
MCDRAM + DDR

Large High Bandwidth Memory Æ MCDRAM
Huge bulk memory Æ DDR

New on-die interconnect: Mesh High BW connection between cores and memory

Integrated Fabric: Omni-Path Better scalability to large systems. Lower Cost
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance Results have been estimated based on internal Intel analysis and are provided
for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

What is different about Cori?

Edison	(Xeon	E7-4680	
v2;	“Ivy	Bridge”):	
	
●  5576	nodes	
●  12	physical	cores/socket	
●  24	logical	cores/socket	

	
●  2.4	-	3.2	GHz	

	

●  8	double	precision	opera7ons	per	
cycle		

	
●  2.5	GB	DRAM/core	(64	GB/node)	

	
●  ~100	GB/s	memory	bandwidth	

Cori	(Xeon	Phi	7250;	
“Knights	Landing”):	
	
●  9688	nodes	
●  68	physical	cores/socket	
●  272	logical	cores/socket	

	
●  1.2-1.4	GHz	(up	to	1.6	GHz	in	Turbo	

Mode)	
	
●  32	double	precision	opera7ons	per	

cycle	
	
●  16	GB	of	fast	memory	(MCDRAM)	

									96GB	of	DDR4	DRAM	
	
●  ~115	GB/s	DDR4	bandwidth	
●  ~400	GB/s	MCDRAM	bandwidth	

Knights Landing overview

-	8	-	

KNL ISA
E5-2600
(SNB1)

SSE*

AVX

E5-2600v3
(HSW1)

SSE*

AVX

AVX2

AVX-512CD

x87/MMX x87/MMX

KNL
(Xeon Phi2)

SSE*

AVX

AVX2

x87/MMX

AVX-512F

BMI

AVX-512ER

AVX-512PF

BMI

TSX

KNL implements all legacy instructions
• Legacy binary runs w/o recompilation
• KNC binary requires recompilation

KNL introduces AVX-512 Extensions
• 512-bit FP/Integer Vectors
• 32 registers, & 8 mask registers
• Gather/Scatter

Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch

Exponential and Reciprocal Instructions

LE
G

AC
Y

No TSX. Under separate
CPUID bit

1. Previous Code name Intel® Xeon® processors
2. Xeon Phi = Intel® Xeon Phi™ processor

Knights Landing overview

-	9	-	

10

Memory Modes

Hybrid Mode

DDR
4 or 8 GB
MCDRAM

8 or 12GB
MCDRAM

16GB
MCDRAM

DDR

Flat Mode

P
h

ys
ic

al
 A

d
d

re
ss

DDR
16GB

MCDRAM

Cache Mode

• SW-Transparent, Mem-side cache
• Direct mapped. 64B lines.
• Tags part of line
• Covers whole DDR range

Three Modes. Selected at boot

P
h

ys
ic

al
 A

d
d

re
ss

• MCDRAM as regular memory
• SW-Managed
• Same address space

• Part cache, Part memory
• 25% or 50% cache
• Benefits of both

Knights Landing overview

-	10	-	

Flat MCDRAM: SW Architecture

Memory allocated in DDR by default Æ Keeps non-critical data out of MCDRAM.
Apps explicitly allocate critical data in MCDRAM. Using two methods:

� “Fast Malloc” functions in High BW library (https://github.com/memkind)
� Built on top to existing libnuma API

� “FASTMEM” Compiler Annotation for Intel Fortran

11

Flat MCDRAM with existing NUMA support in Legacy OS

 Node 0

Xeon Xeon DDR DDR KNL MC
DRAM DDR

MCDRAM exposed as a separate NUMA node

Node 1 Node 0 Node 1

Xeon with 2 NUMA nodes KNL with 2 NUMA nodes

≈

Knights Landing overview

-	11	-	

Flat MCDRAM SW Usage: Code Snippets

float *fv;
fv = (float *)malloc(sizeof(float)*100);

12

Allocate into DDR

float *fv;
fv = (float *)hbw_malloc(sizeof(float) * 100);

Allocate into MCDRAM

c Declare arrays to be dynamic
 REAL, ALLOCATABLE :: A(:)

!DEC$ ATTRIBUTES, FASTMEM :: A

 NSIZE=1024
c allocate array ‘A’ from MCDRAM
c
 ALLOCATE (A(1:NSIZE))

Allocate into MCDRAM

C/C++ (*https://github.com/memkind) Intel Fortran

Knights Landing overview

-	12	-	

KNL Mesh Interconnect
Mesh of Rings
� Every row and column is a (half) ring

� YX routing: Go in Y Æ Turn Æ Go in X

� Messages arbitrate at injection and on
turn

Cache Coherent Interconnect
� MESIF protocol (F = Forward)

� Distributed directory to filter snoops

Three Cluster Modes
(1) All-to-All (2) Quadrant (3) Sub-NUMA
Clustering

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

Knights Landing overview

-	13	-	

Cluster Mode: Quadrant
Chip divided into four virtual
Quadrants

Address hashed to a Directory in
the same quadrant as the Memory

Affinity between the Directory and
Memory

Lower latency and higher BW than
all-to-all. SW Transparent.

15

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1
2

3

4

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

Knights Landing overview

-	14	-	

Cluster Mode: Sub-NUMA Clustering (SNC)
Each Quadrant (Cluster) exposed as a
separate NUMA domain to OS.

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and
Memory

Local communication. Lowest latency
of all modes.

SW needs to NUMA optimize to get
benefit.

16

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1
2

3

4

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

Multi-channel DRAM overview

-	15	-	

MCDRAM Modes
! Cache mode

• No source changes needed to use
• Misses are expensive (higher latency)

• Needs MCDRAM access + DDR access

! Flat mode
• MCDRAM mapped to physical address space
• Exposed as a NUMA node

• Use numactl --hardware, lscpu to display configuration
• Accessed through memkind library or numactl

! Hybrid
• Combination of the above two

• E.g., 8 GB in cache + 8 GB in Flat Mode

KNL Cores +
Uncore (L2)

MCDRAM
(as Cache)

DDR

KNL Cores +
Uncore (L2)

MCDRAM
(as Mem)

DDR

KNL Cores +
Uncore (L2)

MCDRAM
(as Cache)

DDR

MCDRAM
(as Mem)

Physical Addr Space

Physical Addr Space

8

Multi-channel DRAM overview

-	16	-	

MCDRAM as Cache MCDRAM as Flat Mode
! Upside

• No software modifications required
• Bandwidth benefit (over DDR)

! Downside
• Higher latency for DDR access

• i.e., for cache misses
• Misses limited by DDR BW
• All memory is transferred as:

• DDR -> MCDRAM -> L2
• Less addressable memory

! Upside
• Maximum BW
• Lower latency

• i.e., no MCDRAM cache misses
• Maximum addressable memory
• Isolation of MCDRAM for high-

performance application use only

! Downside
• Software modifications (or interposer

library) required
• to use DDR and MCDRAM in the same app

• Which data structures should go where?
• MCDRAM is a finite resource and

tracking it adds complexity

9

KNL Cores +
Uncore (L2)

MCDRAM
(as Cache)

DDR

KNL Cores +
Uncore (L2) DDR

MCDRAM
(as Mem)

Multi-channel DRAM overview

-	17	-	

Accessing MCDRAM in Flat Mode
! Option A: Using numactl

• Works best if the whole app can fit in MCDRAM

! Option B: Using libraries
• Memkind Library

• Using library calls or Compiler Directives (Fortran*)
• Needs source modification

• AutoHBW (interposer library based on memkind)
• No source modification needed (based on size of allocations)
• No fine control over individual allocations

! Option C: Direct OS system calls
• mmap(1), mbind(1)
• Not the preferred method

• Page-only granularity, OS serialization, no pool management
*Other names and brands may be claimed as the property of others. 21

Multi-channel DRAM overview

-	18	-	

Option A: Using numactl to Access MCDRAM
! MCDRAM is exposed to OS/software as a NUMA node
! Utility numactl is standard utility for NUMA system control

• See “man numactl”
• Do “numactl --hardware” to see the NUMA configuration of your system

! If the total memory footprint of your app is smaller than the size of MCDRAM
• Use numactl to allocate all of its memory from MCDRAM
• numactl --membind=mcdram_id <your_command>

• Where mcdram_id is the ID of MCDRAM “node”

! If the total memory footprint of your app is larger than the size of MCDRAM
• You can still use numactl to allocate partpartpartpart of your app in MCDRAM

• numactl --preferred=mcdram_id <your_command>
• Allocations that don’t fit into MCDRAM spills over to DDR

• numactl --interleave=nodes <your_command>
• Allocations are interleaved across all nodes

22

Multi-channel DRAM overview

-	19	-	

23

Option B.1: Using Memkind Library to Access MCDRAM

float *fv;

fv = (float *)malloc(sizeof(float) * 1000);

Allocate 1000 floats from DDR
#include <hbwmalloc.h>

float *fv;

fv = (float *)hbw_malloc(sizeof(float) * 1000);

Allocate 1000 floats from MCDRAM

c Declare arrays to be dynamic

REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DEC$ ATTRIBUTES FASTMEM :: A

NSIZE=1024

c

c allocate array ‘A’ from MCDRAM

c

ALLOCATE (A(1:NSIZE))

c

c Allocate arrays that will come from DDR

c

ALLOCATE (B(NSIZE), C(NSIZE))

Allocate arrays from MCDRAM and DDR in Intel® Fortran Compiler

Multi-channel DRAM overview

-	20	-	

Option B.2: AutoHBW
! AutoHBW: Interposer Library that comes with memkind

• Automatically allocates memory from MCDRAM
• If a heap allocation (e.g., malloc/calloc) is larger than a given threshold

! Demo
• see /examples/autohbw_test.sh
• Run gpp with AutoHBW

! Environment variables (see autohbw_README)
• AUTO_HBW_SIZE=x[:y]
• AUTO_HBW_LOG=level

• AUTO_HBW_MEM_TYPE=memory_type # useful for interleaving

! Finding source locations of arrays
• export AUTO_HBW_LOG=2

• ./app_name > log.txt
• autohbw_get_src_lines.pl log.txt app_name

29

Multi-channel DRAM overview

-	21	-	

Advanced Topic: MCDRAM in SNC4 Mode
! SNC4: Sub-NUMA Clustering

• KNL die is divided into 4 clusters (similar to a 4-Socket Haswell)
• SNC4 configured at boot time
• Use numactl --hardware to find out nodes and distances

• There are 4 DDR (+CPU) nodes + 4 MCDRAM (no CPU) nodes, in flat mode

! Running 4-MPI ranks is the easiest way to utilize SNC4
• Each rank allocates from closest DDR node

• If a rank allocates MCDRAM, it goes to closest MCDRAM node

! If you run only 1 MPI rank and use numactl to allocate on MCDRAM
• Specify all MCDRAM nodes

• E.g., numactl –m 4,5,6,7

MCDRAM MCDRAM

MCDRAM

DD
R

MCDRAM

DD
R

30

DD
R

DD
R

KNL Cores +
Uncore (L2) DDR

MCDRAM
(as Mem)

Compare with 2 NUMA nodes

Multi-channel DRAM overview

-	22	-	

Observing MCDRAM Memory Allocations
! Where is MCDRAM usage printed?

• numastat –m
• Printed for each NUMA node
• Includes Huge Pages info

• numastat -p <pid> OR numastat –p exec_name
• Info about process <pid>
• E.g., watch -n 1 –p numastat exec_name

• cat /sys/devices/system/node/node*/meminfo
• Info about each NUMA node

• cat /proc/meminfo
• Aggregate info for system

! Utilities that provide MCDRAM node info
• <memkind_install_dir>/bin/memkind-hbw-nodes

• numactl --hardware

• lscpu

32

Multi-channel DRAM overview

-	23	-	

MCDRAM Emulation Demo

! Use cores on socket A and DDR on socket B (remote memory)
• export MEMKIND_HBW_NODES=0 # HBW allocation go to DDR on Socket A

• numactl --membind=1 --cpunodebind=0 <your_command>

! Any HBW allocations will allocate DDR on socket A
• Accesses to DDR on socket A (local memory) has higher BW

• Also has lower latency (which is an inaccuracy)

Socket
A

DDR

Socket
B

DDR

QPIRunning on Socket A

Remote Mem

(Represents DDR on KNL)
Local Mem

(Represents MCDRAM on KNL)

33

National Energy Research Scientific Computing Center

-	24	-	

